THROMBOLYSIS FOR PROSTHETIC VALVE THROMBOSIS: A REPORT OF 6 CASES AND REVIEW OF THE LITERATURE

Correspondence: Dr. Ernest A. Aniteye, MB CHB, FWACS, FRCA, FGCS
Department of Anaesthesia
University of Ghana Medical School
P. O BOX 4236, Accra
E Mail: aniteyeernest@yahoo.com

Summary
Objectives: To determine the outcome of thrombolysis in patients with Prosthetic valve thrombosis (PVT).
Design: A retrospective descriptive study.
Setting: The intensive care unit of the National Cardiothoracic centre, Korle-bu Teaching Hospital, Accra, Ghana.
Subjects: 5 consecutive patients who were thrombolysed for 6 episodes of prosthetic valve thrombosis.
Patients and Methods: Over a 3-year period 5 patients underwent a total of 6 thrombolytic sessions. All the patients were symptomatic and diagnosis had been confirmed by echocardiography. Streptokinase was used in 5 of the session. 1.5 million International units (IU) was used in the adults and 750,000IU in the 13 year old. One patient had 2.0 million units of urokinase. The infusion was by the short course thrombolytic method over 90 minutes.
Results: There were 6 episodes of thrombosis out of 142 (5.0%) valve replacements during the study period. The mean age was 29.5 ± 11.2 years (range 13-48years). The time from insertion of prosthetic valve to thrombosis was 15.5 months (range 1 week – 2 years). The INR was sub-therapeutic in 5 (83.3%) of the patients. Streptokinase was used in 5 (83.3%) and urokinase in 1 (16.7%) of the patients. The overall success was 83.3%. Thrombolysis was completely successful in 3 (50.0%) and partially in 2 (33.3%). There was no response to thrombolysis in one patient who died after 14 hours.
Conclusion: Thrombosis of prosthetic heart valves is not common from our series. Thrombolysis using streptokinase should be the first line management as it is cheap and relatively safe in the management of such cases.

Key words: Thrombosis, thrombolysis, Prosthetic valve.

Introduction
Prosthetic heart valve disease may be rarely complicated by thromboembolism, bleeding, endocarditis and valve dysfunction from pannus formation. Of these thromboembolism of a mechanical prosthetic valve is the most serious as it leads to severe haemodynamic decompensation including shock and acute heart failure. Thrombosis may also complicate pannus formation. Until recently the management prosthetic valve thrombosis (PVT) was mainly by re-operation where a thrombectomy or replacement of the valve is done. Re-operation is usually by cardiopulmonary bypass and because most of the patients are in intractable heart failure there is a high mortality. Many workers have advocated thrombolysis as the first line management PVT using the rapid infusion or the slow infusion method. The mortality of the PVT is related to NYHA class of heart failure at the time of presentation, with NYHA IV usually having a poor prognosis. The intensive care unit of the Cardiothoracic Centre has for the past 3 years treated 5 patients who had 6 episodes of PVT. This study therefore looks at management of these cases as well the outcome in terms of morbidity and mortality.
Method
Using the intensive care, admissions and discharge register, the report books and the patients case notes, patients who had thrombolysis for prosthetic valve thrombosis between 1st January 2003 and 31st December 2006 were studied. The clinical presentation, NYHA Class of heart failure, the initial INR, and echocardiographic information were also looked for.

The patients were all thrombolysed in the intensive care unit of the Cardiothoracic Intensive Care Unit. All the patients had invasive monitoring through a radial arterial and a central venous line. Inotropic support by dopamine and adrenaline infusions was started as part of the protocol for management of such cases. After pre-thrombolytic therapy of intravenous methylprednisolone 250mg and Promethazine 12.5mg, 5 patients were administered streptokinase in and 1 urokinase. After a test dose of 20,000 IU units, each patient was administered 1.5 million units of streptokinase in the adults and 750,000 units in the adolescent. Two million units of urokinase was administered to one patient who had previously been administered streptokinase. All the thrombolytics were infused over a 90 minute period.

Complete hemodynamic success was defined as return of the transvalvular gradient to normal. Partial success was defined as partial improvement in gradient without complete normalization of the valve movements.

The data was analysed using SSPS (Microsoft 2003).

Results
There were 6 episodes of PVT in 6 patients out of a total of 142 valve replacements during the study period. The age range was 13-48 years (mean 29.5 ± 11.2 years). There was a male to female ratio of 2:1. The mitral valve was involved in 5 (83.3%) of the episodes with the aortic valve being involved in 1 episode. Five (83.3%) of the patients had sub-therapeutic INR. These are depicted in table 1 below.

All the patients presented with pulmonary oedema, 3 (50.0%) were hypotensive and 1 (16.7%) was in shock with multi-organ dysfunction. The mean time from insertion of the valve till thrombosis was 15.5 ± 11.2 months with a range of 7 days to 24 months. Three (50.0%) of the patients were in NYHA IV and 3 (50.0%) in NYHA III.

Table 1: Showing age, sex, of valve, INR, clinical signs and NYHA class.

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Valve thrombolysed</th>
<th>Age of valve mouths</th>
<th>INR</th>
<th>Clinical signs</th>
<th>NYHA Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>M</td>
<td>Mitral bileaflet</td>
<td>2</td>
<td>1.5</td>
<td>Pulmonary oedema</td>
<td>III</td>
</tr>
<tr>
<td>29</td>
<td>M</td>
<td>Mitral bileaflet</td>
<td>21</td>
<td>1.3</td>
<td>Pulmonary oedema</td>
<td>II</td>
</tr>
<tr>
<td>29</td>
<td>M</td>
<td>Mitral bileaflet</td>
<td>24</td>
<td>1.7</td>
<td>Pulmonary oedema</td>
<td>IV</td>
</tr>
<tr>
<td>31</td>
<td>F</td>
<td>Mitral bileaflet</td>
<td>22</td>
<td>1.2</td>
<td>Pulmonary oedema</td>
<td>IV</td>
</tr>
<tr>
<td>27</td>
<td>F</td>
<td>Mitral bileaflet</td>
<td>24</td>
<td>2.0</td>
<td>Pulmonary oedema</td>
<td>III</td>
</tr>
<tr>
<td>48</td>
<td>M</td>
<td>Mitral bileaflet</td>
<td>0.25 (7 days)</td>
<td>1.5</td>
<td>Pulmonary oedema</td>
<td>IV</td>
</tr>
</tbody>
</table>

Streptokinase was used in 5 (83.3%) of with urokinase in 1 (16.7%) for thrombolysis. Thrombolysis was successful in 3 (50.0%) of the patients with a partial success in 2 (33.3%). The overall success rate was 83.3%. The patients with partial success later had re-operation. The average time to improvement of haemodynamic signs was 4.4 ± 2.2 hours with a range of 2-8 hours. These are seen in table 2.

Table 2: Thrombolytic, time of improved function, success and outcome of thrombosis.

<table>
<thead>
<tr>
<th>Valve thrombolysed</th>
<th>Thrombolytic used</th>
<th>Time of improved function/Hrs</th>
<th>Success of thrombolysis</th>
<th>NYHA Class</th>
<th>Complications of thrombolysis</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitral</td>
<td>Streptokinase</td>
<td>2</td>
<td>Complete</td>
<td>III</td>
<td>Allergy Hydroptension</td>
<td>Alive 3 years</td>
</tr>
<tr>
<td>Mitral</td>
<td>Streptokinase</td>
<td>6</td>
<td>Complete</td>
<td>III</td>
<td>Allergy Hydroptension</td>
<td>Rethrombosed In 3 months</td>
</tr>
<tr>
<td>Mitral</td>
<td>Streptokinase</td>
<td>5</td>
<td>Complete</td>
<td>IV</td>
<td>Allergy Hydroptension</td>
<td>Alive 4 years</td>
</tr>
</tbody>
</table>

Streptokinase was used in 5 (83.3%) of with urokinase in 1 (16.7%) for thrombolysis. Thrombolysis was successful in 3 (50.0%) of the patients with a partial success in 2 (33.3%). The overall success rate was 83.3%. The patients with partial success later had re-operation. The average
time to improvement of haemodynamic signs was 4.4 ± 2.2 hours with a range of 2-8 hours. These are seen in Table 2.

One of the patients who had a partial success from thrombolysis from use of urokinase died after redo-surgery. The commonest complication was allergy (66.7%) and this was from the use of streptokinase. The two patients who died were in NYHA class IV.

Four of the patients who survived the management of their PVT are still alive 39-48 months after the thrombotic events.

Discussion

Prosthetic valve thrombosis though infrequent is usually dreaded by most physicians because of the severe haemodynamic complications. After PVT patients can present with hypotension, pulmonary oedema, embolic phenomenon or more seriously cardiogenic shock 1-3. The incidence of left sided PVT is reported to be between 0.5 – 8% but this increases to 20% in right sided valves especially in prosthetic tricuspid valves 7. The institutional incidence of PVT in our study (5.0%) is within this range. Another study by Sivasubramanian who use the same Sorin bileaflet valves as our institution had an incidence of 6.7% 8.

Renzulli cited the most significant risk as tilting disc prostheses, prostheses without pyrocarbon coating, large prostheses, tilting disc prostheses with a small orifice posteriorly oriented, atrial fibrillation, enlarged left atrium and time from implant greater than 4 years. The mitral valve from previous studies has been found to be more commonly involved in left sided PVT and this agrees with our finding of 83.3% 1,4,6. The patient with the aortic valve had a cage-ball valve all the other patients had Sorin bileaflet valves. Rizzoli et al in their study demonstrated that the relative risk of thrombosis was 12 times higher for the tricuspid prostheses and seven times higher for the mitral prosthesis 10. Rizzoli and his colleague also showed that a 69% risk reduction if Sorin tilting valves were used and this risk reduced further to 83% with Sorin bileaflet valves, the common valve used in our institution.

Many studies have shown a correlation between PVT and sub-therapeutic INR. Most of the patients with PVT in those studies had INR below 2.01,4,6. Of the 6 episodes of PVT 5 (83.3%) had INR less 2.0. The main cause of sub-therapeutic INR in these patients was non-compliance in the taking of their coumarin drugs. The patient with the aortic PVT who had an INR of 2.0 had in addition extensive pannus formation around and in the cavity of the valve. Pannus formation, in addition to having an obstructive effect may also predispose to the formation of extensive thrombi which was present in this particular patient10.

Other causes of thrombotic events are associated coagulation disorders including protein C, Protein S and antithrombin III deficiencies11.

Kontos, while investigating the clinical signs of PVT listed exertional dypnoea, from pulmonary oedema as one of the main features 2. He indicated that the presence of shock usually indicated a poor prognosis during management. This finding has also been confirmed in other studies 1,4,8. All the patients in the present study had pulmonary oedema at presentation. Although hypotension was present in 66.7% of the cases only one was in shock with multi-organ dysfunction. All the patients were in NYHA class III-IV at the time of presentation. Roudant et al in their study of 127 cases had patients 90% of their cases in NYHA III-IV12. It has been categorically proven that a NYHA class of III-IV is associated with a high mortality rate no matter the mode of management. However workers have advocated thrombolysis for these groups of patients12-13.

Thrombosis can occur if the administration of heparin is not done early. There was an early thrombosis in our study of 7 days postoperatively. Talwar and his colleagues in their study found out that 6.1% of their patients developed significant thrombosis in 9 days if heparin therapy was not aggressive enough while warfarin was sub-therapeutic which has been confirmed by other workers13-15.

Streptokinase (SK), urokinase (UK) and tissue plasminogen activator (rtPA) have all been used for thrombolysis with relatively good results11-17. Roudaut et al in their study found out that SK and rTPA were more effective than UK for thrombolysis. The other factors that may affect the choice of thrombolytic would be, the side-effects of streptokinase, the non-availability of urokinase and the expense of rTPA 6,7,12,16,17.

Some workers have used the prolonged or short course infusion protocols for thrombolysis depending on the haemodynamic condition of the patients. However there is no clear advantage of one protocol over the other in terms of results and the protocol adopted may depend on individual or institutional preferences5,12,14,16-18. Our institution uses the short course protocol which is much cheaper than the prolonged course infusion technique. The short course protocol has the advantage in that clinical improvement is seen early in the cases. Overall success rates of thrombolysis cited in the literature have been between 70-90% and these have been independent of the thrombolytic used12,16,18. Our overall success rate of 83.3% falls within range. However thrombolysis in patients
presenting in NYHA class III-IV is less successful than in patients in class I-II. It has become evident that transoesophageal echocardiography (TEE) has become invaluable in the diagnosis and the proper management of patients with PVT. Many workers use TEE to follow the progress of thrombolysis in these patients to determine the risk of emboli and also to assess the success to thrombolysis.12,13,16-19

Complications cited in the literature include embolic phenomenon, strokes, transient ischaemic attacks, bleeding and allergy especially to SK2,12,14,16-18. Our study had a high proportion of allergy to SK because of the suspected high incidence of streptococcal sore throats in developing countries. Surprisingly there were no embolic phenomenon and also no strokes in our study.

It is now evident that thrombolysis has a lower mortality for all classes of NYHA definition of heart failure from PVT and the ACC/AHA current recommendations advice thrombolysis for most cases of PVT. There is also a high mortality in patients presenting with PVT and shock. Gupta and his colleagues recorded a mortality of 78\% of patients who presented with PVT and shock17. One patient in our study died during thrombolysis and his presentation was shock and multiorgan dysfunction.

\textbf{Conclusion}

Thrombosis of prosthetic heart valves is not common from our series. Thrombolysis using streptokinase should be the first line management as it is cheap and relatively safe in the management of such cases.

\textbf{References}

2- Kontos GJ Jr; Schaff HV.; Orszulak TA.; Puga FJ.; Pluth JR.; Danielson GK. Thrombotic obstruction of disc valves: clinical recognition and surgical management. Ann Thorac Surg 1989;48:60–65\[Abstract\]

3-Thorburn CW.; Morgan JJ.; Shanahan MX.; Chang VP. Long-term results of tricuspid valve replacement and the problem of prosthetic valve thrombosis. Am J Cardiol. 1983;51:1128–1132\[CrossRef\][Medline]

4- Deviri E.; Sareli P.; Wisenbaugh T.; Cronje SL. Obstruction of mechanical heart prostheses: clinical aspects and surgical management. J Am Coll Cardiol 1991;17:646–650\[Abstract\]

5- Akins CW. Results with mechanical cardiac valvular prostheses. Ann Thorac Surg 1995;60:1836–1844

6- Mantegia Rosa.; Souto Juan Carlos.; Altès Albert.; Mateo Jose; Arís Alejandro; Dominguez José et al. Short-course thrombolysis as the first line of therapy for cardiac valve thrombosis. J Thorac Cardiovasc Surg 1998;115:780-784

8- Sivasubramanian S.; Vijayshankar CS.; Krishnamurthy SM.; Santhosham R; Dwarkanath V Rajaram. Surgical management of prosthetic valve obstruction with the Sorin tilting disc prosthesis. J Heart Valve Dis. 1996 Sep;5(5):548-52

